Coverage-Based Opacity Estimation for Interactive Depth of Field in Molecular Visualization

Sathish Kottravel

Linköping University

Martin Falk

Linköping University

Erik Sundén

Linköping University

Timo Ropinski

Ulm University

IEEE Pacific Visualization Symposium 2015


In this paper, we introduce coverage-based opacity estimation to achieve Depth of Field (DoF) effects when visualizing molecular dynamics (MD) data. The proposed algorithm is a novel object-based approach which eliminates many of the shortcomings of state-of-the-art image-based DoF algorithms. Based on observations derived from a physically-correct reference renderer, coverage-based opacity estimation exploits semi-transparency to simulate the blur inherent to DoF effects. It achieves high quality DoF effects, by augmenting each atom with a semi-transparent shell, which has a radius proportional to the distance from the focal plane of the camera. Thus, each shell represents an additional coverage area whose opacity varies radially, based on our observations derived from the results of multi-sampling DoF algorithms. By using the proposed technique, it becomes possible to generate high quality visual results, comparable to those achieved through ground-truth multi-sampling algorithms. At the same time, we obtain a significant speedup which is essential for visualizing MD data as it enables interactive rendering. In this paper, we derive the underlying theory, introduce coverage-based opacity estimation and demonstrate how it can be applied to real world MD data in order to achieve DoF effects. We further analyze the achieved results with respect to performance as well as quality and show that they are comparable to images generated with modern distributed ray tracing engines.


	title={Coverage-Based Opacity Estimation for Interactive Depth of Field in Molecular Visualization},
	author={Kottravel, Sathish and Falk, Martin and Sund{\'e}n, Erik and Ropinski, Timo},
	booktitle={Proceedings of 2015 IEEE Pacific Visualization Symposium, PacificVis 2015, Hangzhou, China, April 14-17, 2015}
	editor={Liu, Shixia and Scheuermann, Gerik and Takahashi, Shigeo}