
Ulm University | 89069 Ulm | Germany

Faculty of Engineering,
Computer Science and Psychology

Institute of Media Informatics
Visual Computing Group

Combining Interactive Exploration
and Search for Navigating
Academic Citation Data
Master’s Thesis in Computer Science at Ulm University

Presented by:
David ’-1’ Schmid
david-1.schmid@uni-ulm.de
https://orcid.org/0000-0001-8453-5026

Examiners:
Prof. Dr. Timo Ropinski
Prof. Dr. Birte Glimm

Advisors:
Christian van Onzenoodt
Dominik Meißner

2018/19

https://orcid.org/0000-0001-8453-5026

Last updated May 27, 2019

© 2018/19 David ’-1’ Schmid

This work is licensed under the Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

Typesetting: XeLaTeX; I use Arch, BTW.

http://creativecommons.org/licenses/by/4.0/

iii

Abstract

In this thesis, we build an academic search engine which supports
exploratory research by focussing on tracking connections through a
wider variety of aspects. These aspects are different than what is com-
monly available through for-profit providers of academic search en-
gines. Especially when researching unfamiliar territory, we need to
identify key journals, authors and papers without losing track of our
collected sources and their context. Commercial providers of academic
search engines calculate their own heuristics and metrics to recom-
mend other publications or authors for further study, but these might
not statisfy a researchers curiosity. On order to find different views
through other aspects of the data, we will need to build our own da-
tabase. To achieve this, we collect freely licensed data from several
sources and serve them publicly accessible through our web applica-
tion. We build software, that can summarize metadata and structure
research automatically, by visualizing the taken path of research steps
as a graph. Through it, we can retrace out steps and preserve the
context of newly discovered sources. The publicly accessible system is
built by using and building free and open software, so it is available
for everyone to use and extend.

Contents

Contents v

1 Introduction 1
1.1 Goal . 1

Functional Requirements . 2
Non-Functional Requirements 2

2 Interactive Navigation in Practice 3
2.1 Starting from a Clean Slate 4
2.2 Detail View . 4

Publication Elements . 4
Facet Elements . 5
Emitters . 6

2.3 Navigation Graph . 6
2.4 Advanced Query Methods . 7
2.5 Conclusion . 8

3 Data Sources 9
3.1 Microsoft Academic Graph (mag) 9
3.2 dblp computer science bibliography (dblp) 10
3.3 Semantic Scholar (s2) . 10
3.4 Notable Mentions . 11
3.5 Conclusion . 12

4 Prototype 13
4.1 Front-End . 13

Vue.js . 14
Cytoscape.js . 14

4.2 Back-End . 15
Apache Solr . 16

4.3 Middleware . 19
Django Channels . 19

5 Related Work 21
5.1 Reference Management . 21
5.2 Exploration . 22

6 Evaluation 25
6.1 Method . 25

v

vi Contents

Basic Tasks . 25
Advanced Tasks . 26

6.2 Results . 26
Participant Remarks . 27

6.3 Discussion . 27

7 Future Work 29
7.1 Metrics . 29
7.2 Load Balancing . 29
7.3 User Interface Improvements 30
7.4 Staying Updated . 30

8 Conclusion 33

List of Figures 35

List of Tables 35

Bibliography 37

One

Introduction
“go away ? tell all others not in the list below to stay out!”

robots.txt,
sciencedirect.com

When breaking into unfamiliar fields of study, researchers need to survey
the current state-of-the-art, identify important authors and find influential
journals. To achieve this, researchers commonly rely on services offered
by for-profit corporations that have the resources to crawl large portions of
the web, including scientific publications. Their academic search engines
offer a variety of additional functionality to aid the exploration process.
Besides search, they allow seeing how often a publication was cited and
by whom, enabling us to find related articles. Based off of their collected
data, some additionally offer recommendations for related papers, topics
or keywords found through text analysis.

But sometimes, what they offer in functionality is just not enough to
satisfy our curiosity. Google Scholar, for example, has two options for sort-
ing: by relevance or date. If we opt to sort the result by date, we will only
be presented with results that were submitted within the last year, with
no option to show more. Where Google fall short, Microsoft fill the gap:
Microsoft Academic provides much more options for sorting and filtering.
When showing the results for a query, they give an overview of authors
and journals, associated topics and keywords, as well as the options to ap-
ply these as filters. Then again, if researchers wanted or needed to have
more options for filtering they are left to their own devices. For example:
when viewing a list of citations for a paper, none of the search engines
allow to exclude a specific author from them (i. e. to remove self-citations
from the results).

Exploratory research also includes reading many publications and de-
ciding their relevance for the own research topic. To keep track of the
initially large amount of publications, researchers currently lack tools that
integrate tightly with search engines. To our knowledge, there is no soft-
ware that automatically tracks the relations between publications, so re-
searchers have to use other tools like mind maps or spread sheets for con-
ducting structured surveys.

1.1 Goal

We propose to combine major aspects of structured research into one sys-
tem: search, exploration and reference management. Integrating these
into one system, will improve on the current shortcomings of academic

1

2 Introduction

search engines and reference management solutions. Each of these major
aspects have excellent tools that support us in accomplishing these tasks
in isolation, but they lack the powers of the other two. While there are
tools that try to reach into one of the other domains, their support is not
integrated as a defining feature, but a crutch to moderate tedious work.

To disambiguate search, exploration and reference management fur-
ther: we define searching as the process of using known words as a query
to find matching publications. Exploration is everything that happens af-
terwards: following references for further perusal, learning new vocabu-
lary for common techniques and identifying important authors or journals.
What was learned through exploration might in turn feed back into new
searches; tracking this process is what we refer to as reference manage-
ment.

Functional Requirements

We want to provide more versatile filtering, so we have better control overversatile filtering
our results. Another goal is enabling users to keep track of their research
and exploration in academic data through automated means. A search en-
gine that integrates automated tracking of our movement while research-automated tracking
ing, enables us to retrace our steps. Identifying influential conferences
and authors is an important aspect of exploring other fields of study. To
empower researchers to decide these criteria on their own, we integrate
alternative metrics into the search engine.alternative metrics

Non-Functional Requirements

For-profit search engines are usually limited in their filtering capabilities
that are available through an API; they might not even have an API. Inopen
essence, they are hindering access to several facets of the data, which
might be useful to researchers. To meet the ends, we need convenient and
programmatic access to large data sets.

Powerful search capabilities usually entail complex query languages.
These capabilities and languages easily overwhelm users that are unfamil-intuitive
iar with both, the language and the storage back end. Consequently, it is
crucial to provide meaningful building blocks that abstract from the query
language, while avoiding unneccessary restrictions.

Once finished, we want to provide the open source implementation in-
cluding instructions to replicate the setup. To encourage others to furthermaintainable
improve the infrastructure and add modifications, software maintainabil-
ity is a major contributing aspect. Every dependency of the system should
have an active community, such that software rot can be countered as a
collective.

In order to allow the system to grow beyond its initial prototype, the
implementations must allow adding redundancy and load-balancing facil-
ities. The mayor involved components must be able to distribute load forexpandable
accepting client requests, serving the front-end and handling internal co-
ordination.

Two

Interactive Navigation in Practice

“You may not [...] automatically search and index the [...] meta
data [...].”

Terms of Use,
SpringerLink

The navigation front-end allows researchers to build a graph of their explo-
ration process: each node represents a taken step, with edges tracing their
taken path. This inherently structures the research process and provides
insights on how information was discovered. The graph reflects previous
actions and visualizes them accordingly.

The navigation graph can be constructed from six primary node types
(Figure 2.1), which will trigger the display of details about the associated
metadata. These details are then used to inspect the information andmake
decisions to take further steps, thus expanding the graph. When reviewing
a publication’s references (the active node’s data), a researcher might find
a contribution relevant to their interest. Once clicked, a new paper node
() ist placed with an edge connecting to the publication it was discovered
through, thus documenting the exploration automatically.

paper

venue

journal

keyword

search

author
Figure 2.1: Icons and
meaning of the primary
node types that can be
placed on the canvas.

Figure 2.2: Screenshot of the implemented prototype
the search input with collection selector (red, top center), tools (cyan, upper right), the
navigation graph (blue, two right thirds of the image) and detail view (green, left third)

3

4 Interactive Navigation in Practice

Figure 2.3: The UI after some basic initial interaction.
This is the result of searching for graph layout algorithm and clicking two papers, linking
them to the search node. The active search node () is highlighted with yellow background.

2.1 Starting from a Clean Slate

Upon first visit, users are presented with only the search box and the tools
(Figure 2.2). The only possible node type that can be added to the graph
is a search node (), since the other five primary node types can only be
accessed through the detail views. To place a new search node (), re-
searchers enter their terms into the search box.

The node is automatically marked as selected, which triggers the dis-
play of the side-pane containing the search results. From this side-pane,
researchers may select relevant papers by clicking on the titles, causing
them to be added to the graph as nodes (), with edges pointing from the
search. Figure 2.3 displays the search results for graph layout algorithm,
where a researcher selected two additional papers from the results: they
are linked to the search node ().

2.2 Detail View

A detail view will always consist of two elements: its type as an icon, fol-
lowed by its name. While the data displayed in a detail view differs by the
selected node type, they always have one or more elements that concern-
ing associated publications.

Publication Elements

A researcher’s goal is to find relevant publications, hence each node will
list these and provide mechanisms to filter them further. An author node
() will list all publications, where the persons name is listed as an author.
Journal nodes () contain a list of all papers published, the same holds for
venue nodes (). A keyword node () will list all publications that were
associated with the keyword. For a paper node (), we provide up to two
elements for publication data: one for publications that were referenced
by the selected paper and one for publications that the selected paper was

2.2. Detail View 5

IEEE Transactions on
Visualization and Computer
Graphics

Kwan-Liu Ma 62

Huamin Qu 49

Daniel Weiskopf 44

Cláudio T. Silva 43

Hanspeter Pfister 43

Arie E. Kaufman 39

Valerio Pascucci 39

Han-Wei Shen 37

Tong-Yee Lee 36

Thomas Ertl 34

Bernd Hamann 32

Ming C. Lin 32

David S. Ebert 30

Publications: 3613

author

Thomas Ertl

Source: mag

IEEE Transactions on
Visualization and Computer
Graphics

34

Computer Graphics Forum 13

Computers & Graphics 10

Historische Zeitschrift 5

The Visual Computer 5

Informatik Spektrum 3

Urban Water Journal 3

Angewandte Chemie 2

Computing and Visualization
in Science

2

Graphical Models \/graphical
Models and Image Processing 2

Publications: 782

journal

Figure 2.5: Facet views on journal and author nodes
Left: to which journals (and how often) has an author published. Right: which authors

published in the journal (and how often).

cited by (Figure 2.2). If information about references or citations is not
available, the elements are not displayed.

Figure 2.4: Two publica-
tion elements on an pa-
per’s detail view.
The upper element lists the

publications that the currently
selected paper was cited by,
the lower lists which sources

the paper references.

These publication lists are accompanied by elements that manipulate
the contents of the list. Researchers have different criteria by which they
select publications: some prefer seeing recent publications first, others
would rather see the most cited papers. To achieve this, researchers may
sort the list either by title, citation count or year, and change the sorting
direction to their preference.

Additionally, these lists can be filtered further by using the filter text-
input. For example, one might be interested in a publication that is refer-
enced by the currently inspected paper. To record the connection between
these papers in the graph, a researcher can use the filter box to find the
referenced paper by entering fragments of title, author and year.

Facet Elements

Another type of element that is provided through the detail views are
facet elements: these can request more information about publications
that are associated with a node, and are usually concerned with counting
occurences of specified attributes. For exploratory research, one might
find it interesting to see where an author usually submits their writing, or
in which years this author had published. The faceting elements can sum-
marize the publications of a node by several aspects: author, year, journal,
venue and keywords. Unfolding author in the detail view of a journal node
(), will show a list off all authors () that ever published there, sorted by
how often they did. The reverse holds as well: unfolding journal on an au-
thor node (), will show all journals () this author published to, including
the count. Both views are displayed in Figure 2.5.
Author nodes () have another special element that will summarize their
positionwithin the list of all authors. This was implemented, because some
fields of study give special value to how often an author named is first or
last on a publication. For that reason, we provide a summary about the
positions where the author occurs within their publications (Figure 2.6).

position count last
1 114 63
2 159 107
3 198 163
4 138 114
5 84 61
6 42 26
7 26 17
8 7 3
9 7 5

10 3 2
11 1 0
12 2 0
15 1 1

author position in paper

Figure 2.6: The summary
of an author’s position
within their publications.

Here, the author has 114
publications where they are in
first position, 159 in second,

etc. The column last counts the
instances where the author

was mentioned last in the list
of authors.

6 Interactive Navigation in Practice

Figure 2.7: The detail view when multiple nodes are selected
When multiple nodes are selected, the search result is the intersection of the results for
each respective node. The small red node connects multiple parents to nodes that were

placed from such a detail view.

Emitters

Emitters are the most integral part of the detail views: these are the el-
ements which cause new linked nodes to appear. They are identified by
having an icon in front of their name, signaling which kind of node they
will emit onto the graph. Navigating the available metadata is the core
of this thesis, these are the elements that build the graph and enable the
exploration. When one of the detail views contain some information re-
garding the author Thomas Ertl, this is represented as and when
the mouse cursor is placed above the emitter the element will change to

, hinting its function.
Emitters are found everywhere within the detail views to enable re-

searchers to follow their interests based on facets or by publications. Each
major node type can be found within the detail views, except search emit-
ters (): they are exclusive to the search box, and are always the beginning
of a journey.

2.3 Navigation Graph

The navigation graph can be panned and zoomed as desired, and is fully
visible as long as no node is selected. Once a node is selected, the previ-
ously explained detail view will appear. The circular context menu can be
used to delete unused nodes; it will be shown when a node is clicked with
the right mouse button. For touch screens with no right click, touching
and holding a node will also show the menu.
Researchers can select several nodes to request details about multiple en-
tities in conjunction. For example: when a paper’s co-authors () were
placed on the navigation graph, selecting two or more author nodes at the
same time will request all publications where the selected authors collabo-
rated. Holding down a Ctrl or Shift key before clicking on a node will add
or remove them from a selection. This is not limited to author nodes, the

2.4. Advanced Query Methods 7

year:[2016 TO *]

year asc

1 / 1 (10 hits)

Process Instance Similarity:
Potentials, Metrics, Applications

OTM Confederated International
Conferences "On the Move to Meaningful
Internet Systems"
2016 - Johannes Pflug, Stefanie
Rinderle-Ma
cited: 3

Integrating Business Process
Management to Model Context in
Healthcare: A case study using
perioperative processes
2016 - Amos Harris

Automatic Business Process Test
Case Selection: Coverage Metrics,
Algorithms, and Performance
Optimizations

International Journal of Cooperative
Information Systems
2016 - Kristof Böhmer, Stefanie
Rinderle-Ma

cited by 173 publications

-(author:"Manfred Reichert")

year desc

1 / 8 (71 hits)

A comparative study of workflow
customization strategies: Quality
implications for multi-tenant SaaS

Journal of Systems and Software
2018 - Majid Makki, Dimitri Van
Landuyt, Bert Lagaisse, Wouter
Joosen

Coadapting multidimension process
properties.

Journal of Software: Evolution and
Process
2017 - Djamel Eddine Khelladi, Reda
Bendraou, Regina Hebig, Marie-
Pierre Gervais

Modeling Contextualized Flexible
Cloud Workflow Services: An MDE
based approach

research challenges in information
science
2017 - Yosra Lassoued, Selmin
Nurcan

cited by 173 publications

+(author:"Manfred Reichert")

year desc

1 / 11 (102 hits)

Process time patterns
Information Systems

2016 - Andreas Lanz, Manfred
Reichert, Barbara Weber
cited: 15

PQL - A Descriptive Language for
Querying, Abstracting and Changing
Process Models

International Conference on Enterprise,
Business-Process and Information
Systems Modeling
2015 - Klaus Kammerer, Jens Kolb,

Manfred Reichert
cited: 4

Change and Compliance in
Collaborative Processes

ieee international conference on
services computing
2015 - Walid Fdhila, Stefanie
Rinderle-Ma, David Knuplesch,
Manfred Reichert
cited: 14

cited by 173 publications

Figure 2.8: Examples of advanced queries
Left to right: +(author:name) to show only self citations; -(author:name) to show all, except

self citations; year:[2016 TO *] to show publications from 2016 onwards

selection can also include other node types: Selecting an author () and
a journal () will show all publications that this author contributed to the
journal.

When an emitter from a selection of nodes is invoked, all currently
selected nodes are connected to the new node via a multi node () (Fig-
ure 2.7). This will keep the clutter in check and allows to select all parents
at once: when such a multi node () is selected, it will select all of its
parents.

2.4 Advanced Query Methods

Searching and filtering are amplified by advanced queries. Through them,
researchers can filter publication lists according to their needs. For exam-
ple: when a paper node () is selected, researchers might show interest
about the citing publications (the cited by element). To remove all self ci-
tations, the researchers can insert -(author:"Capitalized Name") into the
filter text input. When desired, the - can be substituted by +, to show all
self-citations. Range queries that limit the publications to selected years
are supported as well, year:[2016 TO *] will only show publications from
2016 onward (Figure 2.8).

The system also supports queries that contain only the first few charac-
ters of a word. This is important, when different spellings of a word might
occur, such as visualisation and visualization. When searching, a request
“visuali” will match both variants and others that begin with this fragment
(i. e. visualizing).
Last, but not least, we can use the Levenshtein distance to find variations
in words. Because, as much as we try: there will always be a typo around
that no one found. By using this distance we can include these misspelled

8 Interactive Navigation in Practice

Figure 2.10: A possible result during breadth-first research
Starting from a journal, several papers published in the journal were selected for further

inspection. Once read, the relevant refernces were put on the graph, extending the
exploation tree in depth.

results. Adding the suffix ~1 or ~2 to a search term will include words with
an edit distance lower or equal to one or two, respectively (Figure 2.9).

tessellation~1 -tessellation

Source: mag

filter by title, author, year

year desc

1 / 21 (206 hits)

Geometric and combinatorial
structure of a class of spherical
folding tesselations - II.

Australasian J. Combinatorics
2018 - Catarina P. Avelino, Altino F.
Santos

Identification and temporal tracking
of droplet clusters based on Voronoï
tesselation and mean shift algorithm

Proceedings 18th International
Symposium on Flow Visualization
2018 - H. Lian, Y. Hardalupas, Xy.
Chang

Strong Isoperimetric Inequality for
Tessellating Quantum Graphs

arXiv: Metric Geometry
2018 - Noema Nicolussi

Filters

Figure 2.9: Query exam-
ple for finding all publica-
tions that misspelled tes-
sellation

tessellation~1 will find all
matches with edit distance

equal or smaller than one and
-tessellation will remove all
correctly spelled matches.

2.5 Conclusion

Our application combines powerful filtering techniques with a graph vi-
sualizing relations between the taken actions. It is useful for identifying
relevant publications, their authors and publishing institutions. It will also
support in structuring and organizing for a breadt-first search into a given
topic (Figure 2.10).

While the application automatically stores the graph in the browser’s
local storage, researchers may use the upload button in the toolbox to
store the graph on our servers, so they may access it from another loca-
tion. The application is publicly accessible on https://sonne.0ds.de and
the source code is provided on github https://github.com/sonne-academic,
licensed under the terms of the Apache License 2.0.

https://sonne.0ds.de
https://github.com/sonne-academic

Three

Data Sources
“Institutional subscribers are NOT permitted to [...] Use robots
or intelligent agents to access, search and/or systematically
download [...]”

Digital Library Terms of Use,
IEEE Xplore

At the time of writing, there are several data sets that are available for free
download. This chapter highlights the differences in both licensing terms
and the provided data, an overview is provided in Table 3.1. While there
are excellent API providers that allow retrieval of publication metadata,
we focus on data that is provided as a whole. They all share common
attributes: the data about an author’s ORCID is mostly not present and they
are usually distributed as lists of documents, rather than being normalized
for relational databases. This might be owed to how the data is collected,
since crawling the web will always yield a document. Most distributions
do not include the abstracts as plain text, as they are subject to the same
copyright restrictions as full-texts of research papers.

3.1 Microsoft Academic Graph (mag)

The Microsoft Academic Graph data is freely licensed under ODC-BY 1.0
and receives regular updates (1 or 2 weeks between updates). It is the
largest, freely available database and is distributed through Microsofts’
Azure Storage. Microsoft Academic will provide it to anyone free of charge,
although their terms allow them to change that at any time. But, they will
charge for storage, traffic and computation done on Azure.

The mag is built through Microsofts’ bing search engine crawlers and
are post-processed with artificial intelligence machine reader [Res19]. Ab-
stracts are provided as inverted index, which would allow reconstruction

size updates format citation abstracts license

mag 210 1-2 weeks tsv ✔ ✔ ODC-BY 1.0
dblp 6 nightly xml ✘ ✘ ODC-BY 1.0

s2 45 irregular jsonl ✔ ✔ custom
upw 23 irregular jsonl ✘ ✘ none
core 123 irregular jsonl ✘ ✘ none
oag ? irregular jsonl ✔v1 ✘v2 ✘ ODC-BY 1.0
csx ? ? ? ✔ ✘ CC-BY-NC-SA 3.0

Table 3.1: Overview of the reviewed data sets.
Sizes are approximate and stated in millions of documents

9

10 Data Sources

of the original text. This allows them to provide the data under this free
license, otherwise they would infringe on the copyright of the authors.

Drawbacks

Contrary to other data sources, their data is normalized for relational da-
tabases and is split into several tables. This complicates the import con-
siderably, since our database requires them as a denormalized format.

Another drawback is the initial difficulty of requesting access to the
data, since Microsoft Academic does not allow direct download of the set.
Instead, one has to register for an account at their Azure Cloud, which
only works with a Microsoft account. Although Microsoft do provide step-
by-step instructions, the approximately 50 steps for set-up can be confus-
ing. Once all the requirements are met, mag data will be sent to a storage
account of the user. This step requires sending an e-mail to Microsoft
Academic, with the request for access.

Since we were not registered with Azure, we were granted 170 € of
“free trial credit”, and did not have to pay for the cost. The accumulated
cost was about 50 € for retrieving the uncompressed data (about 500 GiB)
and the storage cost. Since this is (labor) expensive, we decided to uti-
lize the permissive license to host it somewhere, where others have easier
access (see [Aca19]).

3.2 dblp computer science bibliography (dblp)

The data from dblp is also avaliable under ODC-BY 1.0 and recieves regu-
lar updates (nightly updates + monthly releases). It is much smaller than
other sources, since the data is curated by dblp, and covers almost no
events outside of computer science. dblp also has no data about references
between publications, but their data is procured from reliable sources such
as the publishers and sometimesmanually submitted by volunteers [tea19].
Their XML is a list of documents, so it was straightforward to import.

Drawbacks

The XML-Schema that dblp uses is very simple, but the data sometime
holds unfortunate surprises. To get these out of the way, our current pro-
cess is to transform the source XML to jsonl format, with many assertions
to catch problems before they are indexed.

Another minor inconvenience is that the XML is encoded as ASCII with
UTF-8 replacements specified through the DTD. Conversion to UTF-8 was
important, since all other data were in UTF-8 as well.

3.3 Semantic Scholar (s2)

The Open Research Corpus provided by Semantic Scholar1 contains ap-
proximately 45 million publications, including references and abstracts. It
is provided under a non-commercial custom license that allows use and
the creation of derivative works for internal operation. Since they include
the abstracts as plain text, they can no longer license the data as freely

1https://api.semanticscholar.org/corpus/

https://api.semanticscholar.org/corpus/

3.4. Notable Mentions 11

(such as ODC-BY). When we contacted them to ask if our use was covered
by the license, they responded that it is. Hence, we do not provide access
to the abstracts, but they could be used to derive a more sophisticated
recommendation for other papers.

The data is provided as jsonl format, and was the easiest to index. They
also provide keywords that were derived automatically from the data. As
sources, they list a variety of publishers and other freely available data
sets; among them are dblp, mag and aminer [Sch19].

Drawbacks

Apart from the unusual license, updates to the data are provided at ir-
regular intervals: the latest two versions (at the time writing) are dated
2019-01-31 and 2018-05-03. The keywords include seemingly random
guesses such as “Naruto Shippuden: Clash of Ninja Revolution 3” which
is assigned to more than 36.000 publications, and is mostly associated
with journals that are concerned with potatoes (Figure 3.1).

Naruto Shippuden: Clash
of Ninja Revolution 3

American Potato Journal 942

American Journal of Potato
Research

821

Acta Neurochirurgica 390

CoRR 288

Economic Botany 238

Acta diabetologia latina 208

Research in Computing
Science

193

Brittonia 186

La Rivista Italiana della
Medicina di Laboratorio -
Italian Journal of Laboratory
Medicine

183

World Journal of Surgery 174

Acta Endoscopica 141

Publications: 36182

journal

Figure 3.1: Semantic
Scholar tagged more
than 36.000 publications
with “Naruto Shippuden:
Clash of Ninja Revolution
3”

There were minor quirks when importing the data, since the unique
author ids were sometimes nested lists instead of lists. Since we did not
want to rely on pre-generated ids, we discarded them and thus had no
further problems.

3.4 Notable Mentions

CiteSeerX (csx)

CiteSeerXs’ data is provided under CC-BY-NC-SA 3.0 Unported2 terms. To
access the data via their Google Drive, one has to reach out to them through
their “Contact Us” form, which did not work. After several fruitless at-
tempts to contact the various jointly responsible persons for csx, we tried
contacting one of the collaborators that they were publishing with. They
graciously provided us with the data, under the condition that we would
not share it, so we did not want to use it.

The data is sourced by their own crawlers, which also generate refer-
ences between publications. We are uncertain if csx is still actively main-
tained, since the github repository still receives minor updates. But when
we issued a search for papers from 2019, we only received 17 results and
some of them were actually from 1999.

CORE (core)

The core data3 is not published under any licensing terms, but accompa-
nied by a disclaimer that “[...] it is up to the user of this dataset to ensure
that the way in which they use the dataset does not breach copyright”. To
our understanding, copyright claims for databases are still under dispute
with not enough cases and landmark court decisions. Therefore we assert,
that the collator of such a database holds the full rights to both distribution
and derivative works. Thus, we did not attempt to use it or gather more
information about it.

2http://csxstatic.ist.psu.edu/downloads/data
3https://core.ac.uk/services/dataset/

http://csxstatic.ist.psu.edu/downloads/data
https://core.ac.uk/services/dataset/

12 Data Sources

Unpaywall (upw)

Unpaywall provide a service that allows checking if there are Open Access
documents for a given DOI. They also provide snapshots4 of their data at
irregular intervals. As with core, they issue no licensing terms with the
data. When we contacted them about the terms they responded: “We do
not have an explicit license specified for the dataset, but you are welcome
to use it any (legal) way you like!”.

Aminer (am)

Aminer have several data sets for various purposes (not limited to aca-
demic citation metadata) and a comparatively small set (3 million papers)
from 2017 derived from DBLP5. Their licensing terms are unclear, as no
license is stated for most of their pages except one: the Open Academic
Graph.

Open Academic Graph (oag)

The Open Academic Graph is a collaboration between mag and am, that
also have links between the sets. There are currently two versions avail-
able:

v1 (2017-06)6 has references, but the information originally (before
February 2019) was licensed as: “It’s a free product for the research com-
munity only”, with a remark on another page that it would be licensed
under ODC-BY 1.0. This has since been fixed, but the original terms were
not acceptable, since they were too vague.

v2 (2019-01)7 is not licensed as of 2019-05-16 and the reference data
was removed from the part that was contributed by mag. Their Google
Group contains a message that it is licensed under ODC-BY 1.08, but that
is not assuring enough.

3.5 Conclusion

dblp, s2 and mag were selected to be a part of our database, since they
were correctly licensed. They have their own merits and drawbacks: dblp
is updated on a daily basis and has high standards towards quality of the
metadata, but it’s limited to computer science publications and has no cita-
tion information. mag is time-consuming to retrieve and difficult to index,
but it provides the largest amount of papers and regular updates. s2 takes
the middle ground, since it’s easy to retrieve and index, but not as large as
the data from mag and does not get updates as frequently. Once the other
publishers’ licensing is cleared up, we may expand the available sources
further.

4http://unpaywall.org/products/snapshot
5https://aminer.org/citation
6https://aminer.org/open-academic-graph
7https://www.aminer.org/oag2019
8https://groups.google.com/d/msg/open-academic-graph/p70XtIDVdMc/lqQwGPWYAgAJ

http://unpaywall.org/products/snapshot
https://aminer.org/citation
https://aminer.org/open-academic-graph
https://www.aminer.org/oag2019
https://groups.google.com/d/msg/open-academic-graph/p70XtIDVdMc/lqQwGPWYAgAJ

Four

Prototype

“Using scripts or spiders to [...] harvest metadata [...] is a seri-
ous violation [...] and will result in the temporary or permanent
termination of download rights for the subscribing institution.”

Authorized Uses for Institutional Subscribers,
ACM Digital Library

This chapter gives rationale about the architectural choices for each of
the involved components. To provide a chance for others to reproduce
the implementation and installation, we focus on free and open source
software. This way, all components fulfill the non-functional requirement
open (from section 1.1). The infrastructure is built as three tiers: storage
and indexing back-end, the middleware for load distribution and back-
end access, and a front-end for application logic and communication (as
introduced in chapter 2).

4.1 Front-End

The front-end is written as a web-application, in order to achieve wide-
spread access: web-browsers are common to all desktop environments
and operating systems. Additionally, modern web-browsers provide a
feature-rich run-time environment and eliminate the need to write and
distribute a purpose-built desktop application. Apart from the built-in
asynchronous event handling, they provide means for: external communi-
cation through WebSockets, persistent storage for user-data and configu-
ration, rendering a large variety of different media formats, text rendering,
and hardware-accelerated graphics.

They also come with disadvantages: the predominant standards HTTP,
HTML, CSS, SVG, WebGL, ECMAScript and the browser API are very ex-
tensive. Additionally, some of these standards regularly receive updates,
including breaking changes and arguably misguided decisions by their im-
plementing vendors1. This requires knowledge of all these standards and
their functional interaction (i. e. CORS, CSP). Unfortunally, web-browsers
tend to implement various sub-sets of these standards (depending on the
browser version), further complicating development. To reduce this com-
plexity of supporting various browser versions, the front-end supports the
recent versions of both, Mozilla Firefox and Chromium. Both browsers
are available under open licenses, for a large variety of operating systems,
and support many of the modern versions of aforementioned standards.

1https://github.com/GoogleChromeLabs/airhorn/pull/37

13

https://github.com/GoogleChromeLabs/airhorn/pull/37

14 Prototype

The web-application is built using two free and open frameworks:
Cytoscape.js for the navigation graph and Vue.js for everything else.

Vue.js

When we started, we did not want to use a JavaScript framework at all,
since every added dependency increases the cost formaintenance. Instead,
we wanted to build mostly on Web Components2 and Custom Elements3.

Web Components solve performance issues in web-browsers: inserting
an element into the Document-Object-Model (DOM) would trigger all up-
datemechanisms. These updates can cause the logic of theweb-application
to recalculate the size another DOM element, causing further updates to
the DOM. This is especially problematic when interacting with and visual-
izing data, as we rely on changing many elements in short intervals. Web
Components work solve this, by introducing a shadow DOM. A shadow
DOM is detached from the document’s DOM, providing a mostly inert con-
tainer. Child elements of a shadow DOM are not affected by style or events
of the DOM it is contained in, and vice-versa cannot affect the real DOM.
Custom Elements additionally allow the definition of new HTML tags (i. e.
<fancy-container>) with their own predefined style and behavior, effec-
tively providing a mechanism for scoping style and reusing code. Regret-
tably, they currently cannot be used when a web-server does not allow
unsafe inline evaluation, as they require it for the style application.

<template>
<details
ref="details"
@toggle="toggled">
<summary>
<slot name="summary">
</slot>

</summary>
<slot
v-if="open alwaysLoad"
name="detail"></slot>

</details>
</template>

<script lang="ts">
import Vue from 'vue';
export default Vue.extend({
name: 'SidebarDetail',
props: {
alwaysLoad: {
type: Boolean,
default: false,

},
},
data: () => ({
open: false,

}),
methods: {
toggled(ev: any) {

// …
},

},
computed: {
details() {

// …
},

}
});
</script>

<style scoped>
summary {
background-color: black;
color: white;
padding: 0.5em;
position: sticky;
top: 0;
margin: 1em 0;

}
</style>

Figure 4.1: Vue.js com-
bines markup, code and
style into single files

We chose Vue.js4 over other JavaScript frameworks, because its usage
is very close to Web Components and can be replaced with plain HTML
Modules5 once they are decided by the W3C. It enables to combine style,
code andmarkup into single file components (see Figure 4.1), closelymimic-
ing the planned feature set of HTML Modules.

Cytoscape.js

With the introduction of the <canvas> element, browsers provide us with
a single element that can render bitmaps without triggering DOM updates.
But, the canvas does complicate development of interactive applications,
since we are no longer working with a tree of HTML elements. This pre-
vents us from using many of the convenient features that HTML, CSS and
JS provide in combination: styling and event handling has to be imple-
mented, yet again.

Cytoscape.js6 is a graph theory library for visualization and analysis
[Fra+19]. It offers built-in animation framework, a styling framework simi-
lar to CSS, event handling and outstanding quality of documentation. Since
it is built to work on a canvas element for efficiency, these features are im-
portant. Where browser support is available, Cytoscape.js will also spawn
an extra thread for drawing on the canvas. In case themain rendering loop
of the browser is under heavy load and cannot provide a stable frame-rate,

2https://developer.mozilla.org/en-US/docs/Web/Web_Components
3https://developers.google.com/web/fundamentals/web-components/customelements
4https://vuejs.org/
5https://github.com/w3c/webcomponents/blob/gh-pages/proposals/html-modules-

explainer.md
6https://js.cytoscape.org/

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developers.google.com/web/fundamentals/web-components/customelements
https://vuejs.org/
https://github.com/w3c/webcomponents/blob/gh-pages/proposals/html-modules-explainer.md
https://github.com/w3c/webcomponents/blob/gh-pages/proposals/html-modules-explainer.md
https://js.cytoscape.org/

4.2. Back-End 15

Figure 4.2: A selection of Cytoscape.js extensions

the additional thread will use the offscreen canvas API, to keep the interac-
tion with the graph smooth. Due to its pluggable architecture, Cytoscape.js
supports additional graph layout algorithms and extensions (e. g. context
menus, see Figure 4.2). While Cytoscape.js does provide efficient built-in
layout algorithms, it does not provide a layout algorithm that will produce
stable results: everytime the graph changes, the nodes might be scattered
randomly. Thus, we use the cytoscape.js-dagre7 extension for a stable
hierarchical layout of the navigation graph.

4.2 Back-End

In order to serve the data to our front-end, we need to use a database
capable of storage and fast access to 210 million publications. Due to the
circumstance, that most sets are distributed as lists of documents we favor
databases built for storing documents. To allow the system to grow and
provide reliable service, the database must be able to distribute its storage
onto several hosts.

There are several popular candidates for document storage, indexing
and search: Apache Solr8, Elasticsearch9, Sphinx10 and Xapian11. These
four were selected from a larger set of Information Retrieval systems, as
their features aligned most with our goals. Sphinx was discarded early,
since it does not allow replication of the index. While Xapian allows repli-
cation, they disqualified for their lack for distributed search and computa-
tion.

7https://github.com/cytoscape/cytoscape.js-dagre
8https://lucene.apache.org/solr
9https://www.elastic.co/

10https://sphinxsearch.com/
11https://xapian.org/

https://github.com/cytoscape/cytoscape.js-dagre
https://lucene.apache.org/solr
https://www.elastic.co/
https://sphinxsearch.com/
https://xapian.org/

16 Prototype

Elasticsearch and Apache Solr are both based off of the same indexing
back-end, written in Java, and support distributed storage, retrieval and
replication. Both are supported by an active community (maintainable)
and allow indexing a wide variety of document formats, including PDF
and Open Document Files. They also provide web APIs and client libraries
for several programming languages. The Solr framework is built with a
focus on providing a pluggable architecture (expandable). As Elasticsearch
requires a commercial license for clustering the database onto multiple
hosts, we decided to use Apache Solr.

Apache Solr

Solr splits its databases into collections of documents. During usual opera-
tion, each collection is defined by a schema which represents the fields of
a document and their types. A most basic example just defining an id and
its type:

<?xml version="1.0" encoding="UTF-8"?>
<schema name="default-config" version="1.6">
<fieldType name="string" class="solr.StrField" docValues="true" sortMissingLast="true"/>
<uniqueKey>id</uniqueKey>
<field name="id" type="string" indexed="true" required="true" stored="true"/>

</schema>

The fieldType definitions can be much more complex to support and
optimize for different use cases. To implement the prefix matching for
our front-end, we use the type text_prefix with two different analyzers:
for query, we split the string value along its whitespaces and convert it to
lower-case to provide case-insensitive results. The generated tokens are
then used for searching the index for matches. The index analyzer is used
when we submit the document to Solr. Instead of storing the lower-cased
words, we add an additional filter that will generate n-grams from the left
word boundary.

<fieldType name="text_prefix" class="solr.TextField" multiValued="false">
<analyzer type="query">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>

</analyzer>
<analyzer type="index">

<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EdgeNGramFilterFactory" minGramSize="2" maxGramSize="15"/>

</analyzer>
</fieldType>

These n-grams are used to provide partial matches of a word, as demon-
strated in Figure 4.3. Solr’s documentation explains examples and facili-
ties for complex use cases and different languages: its example configura-
tion12 features common configurations for various languages, and multiple
analyzers for different matching solutions in English (i. e. phonetic simi-
larity).

12https://github.com/apache/lucene-solr/blob/master/solr/example/example-DIH/solr/
solr/conf/managed-schema

https://github.com/apache/lucene-solr/blob/master/solr/example/example-DIH/solr/solr/conf/managed-schema
https://github.com/apache/lucene-solr/blob/master/solr/example/example-DIH/solr/solr/conf/managed-schema

4.2. Back-End 17

Figure 4.3: The index analyzer with an EdgeNGram filter will produce sev-
eral values that are indexed and can be used to match partial words. Here
“Visualization” is split into several values, and querying for “visualiz” will
match one of the indexed tokens (highlighted in orange).

Once the matches are retrieved, Solr will assign a score to the matches.
The score depends on the amount of matched tokens (by default, a search
result contains all documents that match at least one) and their position in
relative to other matches. We influence this score by boosting, favoring full boosting
matches of a word over partial matches (n-gram) matches. During query,
we define a score boost function as “ngram_field word_field^10” to boost
the score of a fully matched word by an order of magnitude, and thus show
it earlier in our search results.

Solr’s faceting is the mechanism through which our web-application faceting
retrieves the counted attributes for its detail views. Given a query for an
author (author:"Timo Ropinski"), we can specify additional fields for re-
questing facet counts. When we ask for counts for the year field, Solr will
run the query for the author and count how often each respective value
for year occurs. This aids both, fast filtering of results and the motivat-
ing exploration aspect. Facets can be requested for any attribute of the
documents, including (but not limited to) publication year, associated key-
words, journals or venues of the publications; essentially any field that was
stored in the index. But, faceting comes with a cost: it requires to store the
individual attributes besides the inverted index, thus increasing the nec-
essary drive space. Currently, our index of mag, s2 and dblp consumes
roughly 380 GiB of storage (95 GiB per host). Such an index can triple in
size during indexing or an optimization pass, but these are the compacted
sizes.

The large amount of data is difficult to survey before it is stored: incom-
plete or misunderstood documentation about the structure of the data can
make it difficult to import it into a database in the first place. To counter
this, Solr offers a schemaless operation, that can infer previously unde- schemaless
fined fields and guess their type. This was of great benefit to our first
attempts, since we were able to peek into the data and the occurring edge
cases. We used schemaless mode to gain initial insights into the data, to
then define an optimized schema by observation rather than guesswork.

18 Prototype

Why not Graph or Relational Databases?

The decision to forego graph and relational databases for the back-endwas
deliberate: relations between nodes are many (i. e. autor -> (publications,
coauthors, journals), journal -> publications), and (depending on the data
set) require a large amount of pre-processing. This is due to the fact, that
most sets are distributed as non-normalized documents (as discussed in
chapter 3, Data Sources).

Another problem with these connections is especially tricky to solve:
should authors sharing the same name be treated as one? If not, which
decisions must be taken to safely distinguish the authors from their name-
sakes’? When we inspected the data, we found several spelling variations
as well as mistakes in authors’ names, owed to both, publishers and au-
thors. As seen in Figure 4.4, Klaus H. Hinrichs exist in variants with and
without their middle name. Two publications of Frank Steinicke were er-
roneously recorded with misspelled names and distributed with wrong
metadata by the publishers. By choosing a document database we can
effectively defer these inconsistencies, to address them while exploring
the data; whereas relational databases force us to address these problems
before indexing, in order to allow their optimization features to work.

"facet_fields": { "author": [
"Timo Ropinski",37,
"Klaus H. Hinrichs",36,
"Frank Steinicke",35,
"Gerd Bruder",9,
"Jennis Meyer-Spradow",4,
"Jörg-Stefan Praßni",2,
"Frank Steinice",1,
"Frank Stenicke",1,
"G. Brudei",1,
"Harald Frenz",1,
"Jörg Mensmann",1,
"Klaus Hinrichs",1,

Figure 4.4: Misspellings
and variations in authors’
names
Klaus H. Hinrichs have been
recorded in one instance

where their middle name was
not listed and Frank Steinicke
have two recorded typos that
were not corrected by the

publishers.

Titan13 (former JanusGraph) approaches this shortcoming of graph da-
tabases by adding Apache Lucene based indexers (Solr and Elastic Search)
to its supported storage back-ends (Apache Cassandra, Apache HBase or
Oracles’ BerkeleyDB). While combining the best of both worlds, it comes
at the price of sharply increased complexity. Using Titan would enable
running graph data algorithms like PageRank, in a distributed platform
(Apaches’ Spark, Giraph and Hadoop), enabling faster computation of h-
indices or journal impact factors. Although desirable, the complexity was
weighed against the added value and deemed too difficult to maintain,
replicate and implement in the duration of a master’s thesis.

Hardware Recommendations

The system started out with a search cluster of three Solr instances (8 GB
RAM, 200 GB persistent storage and 4 vCores, each). It is enough to pro-
vide reliable and fast access to a medium-sized publication database (46
million documents, s2).

Unfortunately, the introduction of the largest available data set (210
million documents, mag) was too much for these three nodes. They were
frequently running out of RAM for the same basic queries that ran smoothly
for the medium-sized data set. Upgrading the cluster to four bigger nodes
(16 GB RAM, 250 GB persistent storage and 8 vCores, each), improved the
situation considerably. With that change, we still consider the system fea-
sible to deploy for researchers and other enthusiasts with access to 64 GB
of RAM.

General recommendations on sizing the hardware are difficult to pin
down exactly, since there are many variables involved [Luc12]. The Elas-
ticsearch documentation14 recommends keeping the RAM per node below
32 GiB, because Java will use Compressed Ordinary Object Pointers to

13http://titan.thinkaurelius.com/
14https://www.elastic.co/guide/en/elasticsearch/reference/7.0/heap-size.html

http://titan.thinkaurelius.com/
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/heap-size.html

4.3. Middleware 19

reduce memory consumption per allocated object. When the node stays
below 26GiB Java will use the even more efficient Zero-Based Compressed
Ordinary Object Pointers15. Once above the threshold, the JVM will need
to use an extraordinary amount of additional RAM just for storing 64-bit
pointers instead of 32-bit pointers plus offset [Lan14]. They also recom-
mend to only use half of the available memory for the JVM heap, so the
kernel can use the remaining memory for the filesystem cache. Beside the
above, Solr and Elasticsearch are very reserved on giving actual recom-
mendations beyond trial and error.

4.3 Middleware

The middleware serves two purposes: It’s foremost function is to serve the
WebSockets established with the front-end and abstract from Solr’s API. In
the not too distant past, Solr has had several security vulnerabilities that
allow denial-of-service and remote code execution. The servers must be
protected from unauthorized access, which is the secondary function of
the middleware.

The middleware is implemented in Python, as modern Python provides
native asynchronous programming models and the run-time environment
is available for a majority of operating systems. Additionally, Python is
easily extended by the large amount of available libraries and frameworks.
The web-framework django16 provides many management features neces-
sary for the middleware (such as session management, object-relational
mapping and basic security measures). It is complimented by the Chan-
nels17 and aiohttp18 frameworks: they extend django with asynchronous
WebSockets and asynchronous HTTP, respectively.

Django Channels

To fully utilize the django extension, we need to provide a channel layer.
This enables Channels to hand the message distribution off to a message
broker for load balancing, publish-subscribe messaging and at-most-once
message delivery. Additionally, these layers allow the addition of back-
ground tasks, i. e. spawning a worker process that will send updates to
Solr. Channels does not include such a layer in its distribution, although
they maintain an implementation for Redis19. There is also a community
managed layer extension for RabbitMQ20. Such a layer is not strictly nec-
essary for Channels to function, but it will ease scaling the system when
necessary. Redis was not used as a layer, since this would require yet an-
other service (maintenance), the RabbitMQ layer was not available when
we started the project, so we implemented an in-memory layer for Ze-
roMQ21. This layer can be switched from the currently set inproc://memory
address to an address of an external host, in case the system needs to grow.

15https://docs.oracle.com/javase/10/vm/java-hotspot-virtual-machine-performance-
enhancements.htm

16https://www.djangoproject.com/
17https://channels.readthedocs.io/
18https://docs.aiohttp.org/
19https://github.com/django/channels_redis
20https://github.com/CJWorkbench/channels_rabbitmq
21http://zguide.zeromq.org/

https://docs.oracle.com/javase/10/vm/java-hotspot-virtual-machine-performance-enhancements.htm
https://docs.oracle.com/javase/10/vm/java-hotspot-virtual-machine-performance-enhancements.htm
https://www.djangoproject.com/
https://channels.readthedocs.io/
https://docs.aiohttp.org/
https://github.com/django/channels_redis
https://github.com/CJWorkbench/channels_rabbitmq
http://zguide.zeromq.org/

20 Prototype

WebSockets

Communication between web application and Channels is implemented
similar to JSON-RPC22 over WebSockets. The choice for using WebSockets
is motivated by two reasons: firstly, due to its smaller footprint on traf-
fic when compared to HTTP/1.1. Secondly, to enable the server sending
messages that were not necessarily generated by a client request. This is
important if we were to make use of Solr’s streaming feature which can
generate arbitrarily large responses. To minimize RAM usage on the web-
server, we would split the JSON stream into several responses, removing
the necessity of storing the whole response on the server. We can also use
theseWebSockets, if we decide to expand the system to allow collaborative,
simultaneous editing of a navigation graph instance.

22https://www.jsonrpc.org/specification

https://www.jsonrpc.org/specification

Five

Related Work
“arXiv [...] provides metadata for all submissions which is up-
dated each night shortly after new submissions are announced.”

Open Archives Initiative (OAI),
arxiv.org

In this chapter, we focus on tools for reference management and tech-
niques for visualizing and exploring academic citation data.

5.1 Reference Management

We focus on free and open source software that is actively developed and
available for all major operating systems. Additionally, we require that
these solutions provide means to interface with external sources: this way,
we might be able to integrate them into our system. With these rules in
place, we are left with three solutions: JabRef, Zotero and BibSonomy.

JabRef is a reference manager written in Java that stores its database
as BibTeX or BibLaTeX file, but is able to import and export to various
other formats for reference management. It features integration with a
variety of word processors and allows interfacing with several external
search engines such as Google Scholar, dblp, pubmed, Crossref and more1.
The search results can be automatically imported into the reference man-
agement software. Furthermore, it can acquire related articles through
Mr. DLib, an open-source project that provides recommendations as a
free service. It also supports reading and changing PDF annotations for
attached files, as well as XMP Metadata. Their Firefox plugin for sending
citation data to JabRef currently only supports windows. Since they store
all information as BibTeX files, they do not support indexing PDF content.

Zotero2 is a reference manager that allows to store its database offline,
as well as synchronize it with online storage. It will index the content of
attached PDFs to allow free text search through the content. Their soft-
ware is complimented by connector plugin for web-browsers, relying on
the Zotero application running in the background. The plugin supports a
variety of publishing sites, and can import the PDFs directly when the user
is allowed access through a subscription. When the website is not known
to a converter, Zotero also allows to create a citation to the web page,
including a snapshot of the site. Besides its reference manager, Zotero
provides a cloud storage for synchronization. This can be used combined
with the browser plugin to save references to their cloud, in the event the

1https://www.jabref.org/#features
2https://zotero.org

21

https://www.jabref.org/#features
https://zotero.org

22 Related Work

Zotero application is not running in the background. They provide 300
MiB of storage for free, larger capacities can be aquired with an annual
fee. Zotero has an open API that can be used to manipulate the data in
the online storage. Collaboration in groups is possible and is synchronized
promptly between the clients via WebSockets.

BibSonomy3 is an online service for social bookmarking and publication
sharing by the University of Kassel. Their service allows importing publi-
cation data via a browser extension, uploading files (for private or group
access only) and encourages public sharing of collected citation data. This
way, users can search the public repository for already entered metadata
and add them to their own repository. There is an user that mirrors the
dblp repository, so some metadata is automatically populated. They have
a collaboration feature, so open or closed groups of users can collect and
annotate data jointly. Their online storage for privately stored documents
seems to have no limitation in size.

Summary

Zotero and BibSonomy have many features in common, but differ in mi-
nor details. Zotero allows adding metadata between items to indicate a
relation. Relations can be added to the citation data, or items lower in the
hierarchy (such as notes), but there is no way to specify the kind of relation.
BibSonomy has a more powerful tagging feature than Zotero: they allow
users to build hierarchies of tags, such that child tags are automatically
filed into parent tags. Instead of a more powerful tagging system, Zotero
builds such hierarchies by using a folder structure, to the same effect as
BibSonomy. Although BibSonomy is an online service, it can be synced
with a JabRef extension so users are able to work offline.

None of the presented solutions have facilities for tracking the users re-
search, motivating us to implement our system.

5.2 Exploration

The biggest influence for this thesis is the work of Kahng et al. [Kah+16].
Their system serves as visual aid for building SQL queries, and enable
users to execute complex operations (i. e. SQL pivots) interactively. They
continued their research for an interface that provides means for navigat-
ing large graph databases [Pie+17]. Their approach of not presenting the
whole graph, but instead providing the users with means to visit only the
parts relevant to the users, seemed promising and was taken further by
this thesis. Both implementations are not available as open source, and
they also use databases focused relations, rather than documents.

ReviewerNet is built to aid editors of scientific journals in finding suit-
able candidates for peer-reviewing submissions based on their field of
study and past collaborations [SGC19]. The demonstration is based on
a small subset of the s2 corpus: 17.754 papers and their respective au-
thors, from eight journals concerned with computer graphics. They send
the complete database on initial connection. This transmits a large amount

3https://www.bibsonomy.org/

https://www.bibsonomy.org/

5.2. Exploration 23

Figure 5.1: The two paperscape front-ends
Top: paperscape renders one circle per publication on arXiv. Sizes depend on how many
times the paper was cited. Bottom: the “my paperscape” frontend traces connections

between selected papers.

of data, but it keeps an editor’s choices and search requests private. While
they chose to provide the source code for the system, they did not add a li-
cense to it. This prevents us from integrating ReviewerNet into our service,
which would have given access to the whole database.

Paperscape4 is a tile based map of all publications on arXiv (Figure 5.1).
Citation data is generated by extracting information from the PDF files.
Publications are rendered as a circle, their respective sizes depend on how
often they were cited, and the color depends on the field of study they were
published in. The position of the circles is calculated offline through an n-
body physics algorithm that places them closer to each other, when they
are connected by a citation. There is also an accompanying front-end for
exploration that visualizes citations between papers.

Juniper, a Multivariate Graph Visualization, uses a combination of trees
and tables visualize connections between the nodes of a graph database
[NSL18]. Their approach is very flexible and draws many connections
bewteen authors, thus allows to explore by many relationships. They built

4https://paperscape.org & https://my.paperscape.org

https://paperscape.org
https://my.paperscape.org

24 Related Work

a graph database from a small subset of dblp and enhanced it with ad-
ditional attributes taken from https://vispubdata.org. Their front-end is
very complex and requires its users either to read the paper or watch a
video in order to use it. The freely licensed (BSD-3-Clause) source code5 is
available, which allows reuse and modification. Regrettably, they include
many dependencies and the original implementation is built on a graph
library, so we chose to not try and to integrate it into our system.

The arXiv implemented a bib overlay6 for their website that automati-
cally retrieves citation and reference data through Semantic Scholar (the
source for the s2 data). It is deployed as on optional feature and to protect
their users privacy, must be enabled explicitly.

The presented work of other researchers shows potential in many cate-
gories of exploration. But, none of them support tracking to the extent our
prototype provides, which is why we built it.

5https://github.com/caleydo/lineage/tree/juniper
6https://github.com/mattbierbaum/arxiv-bib-overlay

https://vispubdata.org
https://github.com/caleydo/lineage/tree/juniper
https://github.com/mattbierbaum/arxiv-bib-overlay

Six

Evaluation
“We want to provide a public, open, and free API for all. [...]
For that to work, we ask that you be polite [...].”

Etiquette,
Documentation for Crossref’s REST API

To evaluate the system, we invited seven computer science researchers
to qualitative interviews with think-aloud testing. They were given tasks,
which they were to solve using our system. In order to investigate if the
system offers intuitive means of interaction, we made notes on how they
accomplished these tasks; without giving an introduction to the system.
Additionally, we explicitly mentioned that they are allowed to try anything
else that they were curious about, or ask if it was possible.

6.1 Method

Participants were instructed to visit the prototype and were given a physi-
cal copy of a selected survey paper. To coax the participants into using the
features of the system, we selected a paper with a long title and it many
references (460) [BH18]. They were then asked to find this paper using
the system and find out more details about the paper. Once the paper was
selected and placed on the graph, they were instructed to find out more
about the authors of the paper, and the journal it was published in. They
were then asked to find answers to several questions. Once the tasks were
completed, we asked if they wanted to share any remarks concerning the
system.

Basic Tasks

Regarding one author of the publication:

• which other authors were they collaborating with?

• in which journal did they publish most?

• which publication of the author is most cited?

• in how many publications were they the primary author?

Regarding the journal:

• which is the most cited paper in the journal?

• in which year did the journal publish most?

25

26 Evaluation

• which author did publish most on this journal?

Once finished, participants were asked to select one of the referenced pa-
pers in the physical copy of the publication. They were then tasked to add
this paper to the graph and add a note to the reference.

Advanced Tasks

After the basic tasks were finished, they were given additional tasks:

• Find out, how many papers were written in collaboration by the two
authors of the survey, and add the most recent to the graph.

• Find an author of the most cited paper of any journal; how often did
the author publish to this journal?

• Is there a year when this author published more than once to the
journal?

6.2 Results

The first three participants were given no introduction to what the proto-
type does, except that it can be used as an academic search engine and
that the search supports matching by prefix (rather than having to type
complete words).

After the first three participants were finished, it became clear that they
did have a very hard time navigating. For one, when they were asked to
find out something about the author, they clicked on the authors name;
rather than the icon (at the time of the interview, only the icons were able
to emit new nodes). When asked why the chose to use the text, consensus
was due to the habit of using other search engines. When they were then
asked to find out more about the journal, all had a hard time even finding
the name of the journal.

The advanced tasks are tailored towards selecting several nodes at
once, but without explanation were very difficult as well. Once they solved
the first task by filtering the publications for the other authors name, they
were asked: “what would you expect to happen, when you select two
nodes?” The responses were: “you can do that? That would have been
useful to know beforehand!”

Once told and without asking for instructions, they were immediately
using the Ctrl key to select a second node, except one participant: they
tried to move one node on top of another to achieve this, hoping that they
would be grouped together.

There was another commonly encountered design flaw of the evaluated
system: when participants clicked on the paper they were supposed to
find, they were expecting to be presented with the details immediately.
Instead, the system drew the new node on the graph, without any feedback
except the animation. Due to the animation, every participant took note
that something happened, but showed no intent of interacting with the new
node. Without knowing, that the system was built to support tracking the
path they took, the author and journal nodes were (in some cases) placed
as children of the search node, instead of the associated paper.

6.3. Discussion 27

After three completed interviews, we came to the conclusion that we should
at least explain the intent of the system and which problems it tries to solve,
before they were given their tasks. Once they completed the basic tasks,
we asked what they would expect to happen if they were to select more
than one node. This lead to the same exclamaition as before, all partic-
ipants started experimenting by themselves, and began to answer some
advanced tasks; even before they were told what to solve next.

Participant Remarks

All (except one person with no subjective need for reference management)
were stating, that the system is useful for them, and they could see them-
selves using it in the future for overcoming various tasks. Several men-
tioned that this would be useful for doing a breath-first search for struc-
tured literature assessment, since they could easily track their path among
the surveyed publications. Others mentioned that the system would be
very helpful when writing grant proposals, since this often requires them
to write about of the state-of-the-art in other fields of study. If they re-
ceive the grant, the system would help them to recover their tracks at a
later time. Several participating researchers are using Zotero and were
asking if they could import their already established references or export
it to Zotero.

6.3 Discussion

Once introduced to the more of the advanced features of the system, most
participants saw a great deal of value for the prototype, especially for struc-
tured research. All participants were able to derive that holding Ctrl will
change the mode to selecting multiple nodes by themselves. We suspect
this is due to their familiarity in interacting with computers, since all par-
ticipants had a background in computer science.

After the interview’s results were collected, we changed the system in-
teraction in two ways. For immediate feedback, we changed the emitter’s
behavior to display the details immediately. Additionally, we changed the
emitters to place new nodes when the name of the attribute is clicked, in-
stead of just allowing emission via its icon.

All participants completed the given tasks within 10 minutes or less,
but most of them stayed for an equally long time to learn more about our
system. They also suggested more improvements and eagerly requested
features, such as the integration into existing reference management solu-
tions.

Seven

Future Work
“Demonstrate an elevated level of commitment to open-data
and open research [and] Become part of a global data-sharing
community, learning, collaborating, and advocating with a leading-
edge network of data research experts [...]”

Member Responsibilities,
DataCite

With the prototype and the backing infrastructure, we created a new plat-
form for navigating and exploring data. The well of ideas did not run dry
yet, there several further ideas that could be implemented.

7.1 Metrics

Exploring through the basic metrics in the already implemented prototype
is already very useful, but during the evaluation and our own usage, we
found more interesting metrics that help with exploration. Every time a
list of publications is displayed, we could add another filtering mechanic:
the faceting of Solr allows us to see which author or journals are promi-
nent within a full text search, as well as the years when the results were
published. This would help both, in selecting new filters to narrow down
the result and the exploration aspect, since we can see a summary of the
metadata. Especially for an often cited (> 1000) publication, it could be
interesting to see which journals or authors the references came from.

When an author has publications under more than one name, either by
accident or due to a name change, the author nodes chould also carry the
different aliases and calculate their metrics accordingly. A similar system
could be in place for journals that are stored with the year in front of their
name, but that could as well be implemented by using regular expressions
instead of storing a list of all instances. Regular expressions would also
have the benefit to catch future instances of the journal, instead of adding
them manually to the list.

7.2 Load Balancing

While the current implementation does have facilities for load balancing,
we don’t make use of them. The nginx web server has only one upstream
source configured, and the ZeroMQ channel layer is configured to keep
its messages in memory, rather than distributing it over several machines.
Requests to Solr are only sent to a single node, which forwards the requests
to the correct Solr shard. Using a balancing algorithm to distribute the

29

30 Future Work

requests to all available nodes would take some load off of this instance,
but there was no need to configure it, yet.

7.3 User Interface Improvements

When the explored graph grows larger, it would be helpful to collapse parts
of the graph, to reduce visual clutter and aid summarization of an explored
subgraph. To maintain a better overview, tagging and coloring nodes by
category could be beneficial. Additionally, a searchable list of all explored
nodes and assigned tags could be useful for quickly navigating between
nodes. Visually grouping nodes in hierarchies could be an option as well,
and could be automated by utilizing such tags.

As compression inherently reduces entropy for more efficient storage,
its property can be leveraged to lessen cognitive load by reducing the edge
count between nodes [Dwy+13]. This yields a cleaner appearance and
provides visual clustering to the observer. The authors tested their ap-
proach successfully with small graph sizes (< 2000 nodes and edges), so
this might find re-use for collapsing research paths. Another related ap-
proach reduces the node count of graphs through bundling them by their
context [HWR18].

Search results could also be clustered by topic, which Solr can derive
automatically for a given query. Since clustering is a CPU bound operation,
it adds a few seconds of latency and should be provided as an optional
action. Once this is implemented, balancing the load to all Solr nodes
becomes more important.

Integration with external web services for reference management (such
as Zotero or BibSonomy), would allow users to import their already re-
searched materials, as well as adding new materials to their reference
management of choice. Zoteros’ web services also implement versioning
and notifications about updates, which can be used to keep the informa-
tion consistent and the graph in sync. This is especially important, once
the users are allowed to collaborate on our system.

Conveying the metadata of the selected node within the page’s markup
(e. g. Dublin Core) would enable browser plugins of reference managers
to store the reference, without requiring the user to connect to an online
service. This would support users that chose to use reference management
that is not bound to an online service, such as JabRef.

As mistakes sometimes happen, a possibility to undo the previous op-
eration would further improve the system. Navigation between previous
and future states could be coupled to the browser history.

7.4 Staying Updated

When the data is not kept relatively recent, the usefulness of the system
degrades over time. Since the mag is difficult to index into Solr and its
retrieval is associated with fees from Azure, it might be beneficial to look
for other alternatives or find a cheaper way to retrieve and index updates.

Crossrefs’ EventData1 could be such an alternative, as they allow bulk
requests for new submissions or comments of various sources. They also

1https://www.eventdata.crossref.org/guide/

https://www.eventdata.crossref.org/guide/

7.4. Staying Updated 31

collect Twitter messages and posts on reddit that mention DOIs or landing
pages of a conference, as well as new publications registered with DataCite
(a major DOI provider) that are not limited to publications, but also include
published data sets. This data is very suitable for ingestion into Solr, as all
information provided as stand-alone documents. Referencing information
between documents are also available, iff the publishers chose to allow
public access. The EventData service is relatively new and still in beta
stage: as soon as it is stable, it will provide new opportunities for sourcing
new publications.

If our system was popular and connecting an active community, we
could allow researchers to submit corrections and missing references. Ide-
ally, we could pass these on to the publishers, either through Crossref or
DataCite. Alas, such functionality is prone to misuse and needs modera-
tion, which brings us full circle: that would require an active community.

Eight

Conclusion
“Wow, that is awful!”

On: howmost academic publishers work,
Myself

We present our novel exploration system for public use1 and its freely li-
censed source code2 to encourage adoption and modification. We hope
that it might evolve, not just through our contributions and visions, but
also through community effort. Even if the user facing portion is not what
others had in mind, we provide a platform with access to metadata, so
others may build their application based on it.

We achieved our goals for the prototype, to provide more versatile fil-
tering and alternative metrics about the metadata. Furthermore, we met
our requirement for automated tracking of the steps taken in the explo-
ration of the data. Our non-functional requirements have been fulfilled: it
is open, maintainable and built on an expandable foundation. The evalua-
tion through qualitative interviews helped to address some shortcomings
of the user interface and showed favorable regard by the participants.

While we now have a web service that serves access to this data, we
hope that more publishers will opt to provide the data not just to selected
search engine crawlers, but to the research community as well. But for
now, we researchers either have to rely on for-profit corporations to give
back to the community, or we demand that scientific publishers should
provide metadata freely to the public. We opened the data of the Microsoft
Academic Graph to a wider audience, by hosting it on Zenodo3. Since then,
it has been retrieved more than 600 times, helping the research commu-
nity.

In this thesis, we present an open source prototype for exploring academic
publication information through different data sources. It is designed to
permit both, extension in functionality and supporting infrastructure. We
proposed options for keeping the data recent and gave recommendations
for interfacing with external applications.

We plan to maintain and develop the system further, so it might grow
and improve.

1https://sonne.0ds.de
2https://github.com/sonne-academic
3https://zenodo.org/record/2628216

33

https://sonne.0ds.de
https://github.com/sonne-academic
https://zenodo.org/record/2628216

List of Figures

2.1 Icons and meaning of the primary node types that can be placed
on the canvas. 3

2.2 Screenshot of the implemented prototype 3
2.3 The UI after some basic initial interaction. 4
2.5 Facet views on journal and author nodes 5
2.4 Two publication elements on an paper’s detail view. 5
2.6 The summary of an author’s position within their publications. 5
2.7 The detail view when multiple nodes are selected 6
2.8 Examples of advanced queries 7
2.10 A possible result during breadth-first research 8
2.9 Query example for finding all publications that misspelled tes-

sellation . 8

3.1 Semantic Scholar tagged more than 36.000 publications with
“Naruto Shippuden: Clash of Ninja Revolution 3” 11

4.1 Vue.js combines markup, code and style into single files 14
4.2 A selection of Cytoscape.js extensions 15
4.3 The index analyzer with an EdgeNGram filter will produce sev-

eral values that are indexed and can be used to match partial
words. Here “Visualization” is split into several values, and
querying for “visualiz” will match one of the indexed tokens
(highlighted in orange). 17

4.4 Misspellings and variations in authors’ names 18

5.1 The two paperscape front-ends 23

List of Tables

3.1 Overview of the reviewed data sets. 9

35

Bibliography

References in 3: Microsoft Academic Graph (mag)

[Aca19] Microsoft Academic. Microsoft Academic Graph. 2019-03-22.
doi: 10.5281/zenodo.2628216 (cit. on p. 10).

[Res19] Microsoft Research. Microsoft Academic. 2019. url: https://
www.microsoft.com/en-us/research/project/academic/ (visited
on 2019-05-16) (cit. on p. 9).

References in 3.1: dblp computer science bibliography (dblp)

[tea19] dblp team. How accurate is the data in dblp? 2019-09-15. url:
https://dblp.org/faq/13500484.html (visited on 2019-05-16)
(cit. on p. 10).

References in 3.2: Semantic Scholar (s2)

[Sch19] Semantic Scholar. Frequently Asked Questions. 2019-05-23.
url: https://www.semanticscholar.org/faq#paper- sources
(visited on 2019-05-23) (cit. on p. 11).

References in 4: Front-End

[Fra+19] Max Franz et al. cytoscape/cytoscape.js. 2019. doi: 10.5281/
zenodo.831800 (cit. on p. 14).

References in 4.1: Back-End

[Lan14] Fabian Lange.Why 35GB Heap is Less Than 32GB – Java JVM
Memory Oddities. 2014-02-26. url: https://blog.codecentric.
de / en / 2014 / 02 / 35gb - heap - less - 32gb - java - jvm - memory -
oddities/ (visited on 2019-05-22) (cit. on p. 19).

[Luc12] Lucidworks. Sizing Hardware in the Abstract: Why We Don’t
Have a Definitive Answer. 2012-07-23. url: https://lucidworks.
com/2012/07/23/sizing-hardware-in-the-abstract-why-we-
dont-have-a-definitive-answer/ (visited on 2019-05-22) (cit.
on p. 18).

37

https://doi.org/10.5281/zenodo.2628216
https://www.microsoft.com/en-us/research/project/academic/
https://www.microsoft.com/en-us/research/project/academic/
https://dblp.org/faq/13500484.html
https://www.semanticscholar.org/faq#paper-sources
https://doi.org/10.5281/zenodo.831800
https://doi.org/10.5281/zenodo.831800
https://blog.codecentric.de/en/2014/02/35gb-heap-less-32gb-java-jvm-memory-oddities/
https://blog.codecentric.de/en/2014/02/35gb-heap-less-32gb-java-jvm-memory-oddities/
https://blog.codecentric.de/en/2014/02/35gb-heap-less-32gb-java-jvm-memory-oddities/
https://lucidworks.com/2012/07/23/sizing-hardware-in-the-abstract-why-we-dont-have-a-definitive-answer/
https://lucidworks.com/2012/07/23/sizing-hardware-in-the-abstract-why-we-dont-have-a-definitive-answer/
https://lucidworks.com/2012/07/23/sizing-hardware-in-the-abstract-why-we-dont-have-a-definitive-answer/

38 Bibliography

References in 5.1: Exploration

[Kah+16] Minsuk Kahng et al. Interactive Browsing and Navigation in
Relational Databases. 2016. arXiv: 1603.02371 [cs.DB] (cit. on
p. 22).

[NSL18] Carolina Nobre, Marc Streit, and Alexander Lex. “Juniper: A
Tree+Table Approach to Multivariate Graph Visualization”. In:
IEEE Transactions on Visualization and Computer Graphics
(2018). doi: 10.1109/TVCG.2018.2865149 (cit. on p. 23).

[Pie+17] Robert Pienta et al. “FACETS: Adaptive Local Exploration of
Large Graphs”. In: SDM. SIAM, 2017, pp. 597–605. doi: 10.
1137/1.9781611974973.67 (cit. on p. 22).

[SGC19] Mario Salinas, Daniela Giorgi, and Paolo Cignoni. ReviewerNet:
Visualizing Citation and Authorship Relations for Finding Re-
viewers. 2019. arXiv: 1903.08004 [cs.DL] (cit. on p. 22).

References in 6: Method

[BH18] Maciej Besta and Torsten Hoefler. Survey and Taxonomy of
Lossless Graph Compression and Space-Efficient Graph Rep-
resentations. 2018. arXiv: 1806.01799 [cs.DS] (cit. on p. 25).

References in 7.2: User Interface Improvements

[Dwy+13] Tim Dwyer et al. “Edge Compression Techniques for Visualiza-
tion of Dense Directed Graphs”. In: IEEE Transactions on Visu-
alization and Computer Graphics 19 (2013), pp. 2596–2605.
doi: 10.1109/TVCG.2013.151 (cit. on p. 30).

[HWR18] Mustafa Hajij, Bei Wang, and Paul Rosen. MOG: Mapper on
Graphs for Relationship Preserving Clustering. 2018. arXiv:
1804.11242 [cs.SI] (cit. on p. 30).

https://arxiv.org/abs/1603.02371
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1137/1.9781611974973.67
https://doi.org/10.1137/1.9781611974973.67
https://arxiv.org/abs/1903.08004
https://arxiv.org/abs/1806.01799
https://doi.org/10.1109/TVCG.2013.151
https://arxiv.org/abs/1804.11242

Name: David ’-1’ Schmid
Matriculation Number: 667815

Declaration

I hereby declare that this thesis titled:

Combining Interactive Exploration
and Search for Navigating
Academic Citation Data

is the product of my own independent work and that I have used no sources
or materials other than those specified. The passages taken from other
works, either verbatim or paraphrased in the spirit of the original quote,
are identified in each individual case by indicating the source. I further
declare that all my academic work was written in line with the princi-
ples of proper academic research according to the official “Satzung der
Universität Ulm zur Sicherung guter wissenschaftlicher Praxis” (Univer-
sity Statute for the Safeguarding of Proper Academic Practice).

Ulm, .
David ’-1’ Schmid

	Contents
	1 Introduction
	1.1 Goal
	Functional Requirements
	Non-Functional Requirements

	2 Interactive Navigation in Practice
	2.1 Starting from a Clean Slate
	2.2 Detail View
	Publication Elements
	Facet Elements
	Emitters

	2.3 Navigation Graph
	2.4 Advanced Query Methods
	2.5 Conclusion

	3 Data Sources
	3.1 Microsoft Academic Graph (mag)
	3.2 dblp computer science bibliography (dblp)
	3.3 Semantic Scholar (s2)
	3.4 Notable Mentions
	3.5 Conclusion

	4 Prototype
	4.1 Front-End
	Vue.js
	Cytoscape.js

	4.2 Back-End
	Apache Solr

	4.3 Middleware
	Django Channels

	5 Related Work
	5.1 Reference Management
	5.2 Exploration

	6 Evaluation
	6.1 Method
	Basic Tasks
	Advanced Tasks

	6.2 Results
	Participant Remarks

	6.3 Discussion

	7 Future Work
	7.1 Metrics
	7.2 Load Balancing
	7.3 User Interface Improvements
	7.4 Staying Updated

	8 Conclusion
	List of Figures
	List of Tables
	Bibliography

